Specification and visualization of anisotropic interaction tensors in polypeptides and numerical simulations in biological solid-state NMR.
نویسندگان
چکیده
Software facilitating numerical simulation of solid-state NMR experiments on polypeptides is presented. The Tcl-controlled SIMMOL program reads in atomic coordinates in the PDB format from which it generates typical or user-defined parameters for the chemical shift, J coupling, quadrupolar coupling, and dipolar coupling tensors. The output is a spin system file for numerical simulations, e.g., using SIMPSON (Bak, Rasmussen, and Nielsen, J. Magn. Reson. 147, 296 (2000)), as well as a 3D visualization of the molecular structure, or selected parts of this, with user-controlled representation of relevant tensors, bonds, atoms, peptide planes, and coordinate systems. The combination of SIMPSON and SIMMOL allows straightforward simulation of the response of advanced solid-state NMR experiments on typical nuclear spin interactions present in polypeptides. Thus, SIMMOL may be considered a "sample changer" to the SIMPSON "computer spectrometer" and proves to be very useful for the design and optimization of pulse sequences for application on uniformly or extensively isotope-labeled peptides where multiple-spin interactions need to be considered. These aspects are demonstrated by optimization and simulation of novel DCP and C7 based 2D N(CO)CA, N(CA)CB, and N(CA)CX MAS correlation experiments for multiple-spin clusters in ubiquitin and by simulation of PISA wheels from PISEMA spectra of uniaxially oriented bacteriorhodopsin and rhodopsin under conditions of finite RF pulses and multiple spin interactions.
منابع مشابه
The effects of F2 adsorption on NMR parameters of undoped and 3C-doped (8, 0) zigzag BPNTs
In this research, we studied the structure, properties and NMR parameters of interaction F2 gas with pristine and 3C-doped (8, 0) zigzag models of boron phosphide nanotubes (BPNTs). in order to reach these aims, we considered four different configurations for adsorption of F2gas on the outer and inner surfaces of BPNTs. The structures of all models were optimized by using density functional the...
متن کامل51V solid-state magic angle spinning NMR spectroscopy and DFT studies of oxovanadium(V) complexes mimicking the active site of vanadium haloperoxidases.
A series of 11 oxovanadium(V) complexes mimicking the active site of vanadium haloperoxidases have been investigated by (51)V magic angle spinning NMR spectroscopy and density functional theory (DFT). The MAS spectra are dominated by the anisotropic quadrupolar and chemical shielding interactions; for these compounds, C(Q) ranges from 3 to 8 MHz, and delta(sigma) is in the range 340-730 ppm. Th...
متن کاملNano Theoretical Study of NMR Shielding Tensors on Ginger Plant
In this research, the Magnetite nanoparticles (Fe304) were prepared by coprecipitation of Fe- andGinger is a well known spice and flavoring agent which has also been used in traditional medicine inmany countries. Ginger contains essential oils including gingerol and zingiberene. It also containspungent principles such as zingerone, and shogaol. In the paper six theoretical methods were used toc...
متن کاملAb Initio Quantum Chemical Studies of 15N and 13C NMR Shielding Tensors in Serine and Complexes of Serine- nH2O: Investigation on Strength of the CαH…O Hydrogen bonding in the Amino Acid Residue.
In this paper, the hydrogen bonding (HB) effects on the NMR chemical shifts of selected atoms in serineand serine-nH2O complexes (from one to ten water molecules) have been investigated with quantummechanical calculations of the 15N and 13C tensors. Interaction with water molecules causes importantchanges in geometry and electronic structure of serine.For the compound studied, the most importan...
متن کاملAll-atom molecular dynamics simulations using orientational constraints from anisotropic NMR samples
Orientational constraints obtained from solid state NMR experiments on anisotropic samples are used here in molecular dynamics (MD) simulations for determining the structure and dynamics of several different membrane-bound molecules. The new MD technique is based on the inclusion of orientation dependent pseudo-forces in the COSMOS-NMR force field. These forces drive molecular rotations and re-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of magnetic resonance
دوره 154 1 شماره
صفحات -
تاریخ انتشار 2002